Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Mol Aspects Med ; 81: 101005, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34311994

ABSTRACT

Viruses with positive-sense single stranded RNA (+ssRNA) genomes are responsible for different diseases and represent a global health problem. In addition to developing new vaccines that protect against severe illness on infection, it is imperative to identify new antiviral molecules to treat infected patients. The genome of these RNA viruses generally codes for an enzyme with RNA dependent RNA polymerase (RdRP) activity. This molecule is centrally involved in the duplication of the RNA genome. Inhibition of this enzyme by small molecules will prevent duplication of the RNA genome and thus reduce the viral titer. An overview of the different therapeutic strategies used to inhibit RdRPs from +ssRNA viruses is provided, along with an analysis of these enzymes to highlight new binding sites for inhibitors.


Subject(s)
Antiviral Agents , RNA Viruses , RNA-Dependent RNA Polymerase , Antiviral Agents/therapeutic use , Humans , RNA Viruses/drug effects , RNA Viruses/genetics , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/genetics
2.
Sci Rep ; 11(1): 4178, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33603016

ABSTRACT

The X family is one of the eight families of DNA polymerases (dPols) and members of this family are known to participate in the later stages of Base Excision Repair. Many prokaryotic members of this family possess a Polymerase and Histidinol Phosphatase (PHP) domain at their C-termini. The PHP domain has been shown to possess 3'-5' exonuclease activity and may represent the proofreading function in these dPols. PolX from Staphylococcus aureus also possesses the PHP domain at the C-terminus, and we show that this domain has an intrinsic Mn2+ dependent 3'-5' exonuclease capable of removing misincorporated dNMPs from the primer. The misincorporation of oxidized nucleotides such as 8oxodGTP and rNTPs are known to be pro-mutagenic and can lead to genomic instability. Here, we show that the PHP domain aids DNA replication by the removal of misincorporated oxidized nucleotides and rNMPs. Overall, our study shows that the proofreading activity of the PHP domain plays a critical role in maintaining genomic integrity and stability. The exonuclease activity of this enzyme can, therefore, be the target of therapeutic intervention to combat infection by methicillin-resistant-Staphylococcus-aureus.


Subject(s)
DNA-Directed DNA Polymerase/genetics , DNA/genetics , Histidinol-Phosphatase/genetics , Nucleotides/genetics , Staphylococcus aureus/genetics , Amino Acid Sequence , Catalytic Domain/genetics , DNA Repair/genetics , DNA Replication/genetics , Exodeoxyribonucleases/genetics , Hydrolases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL